

Science as method and methodology for problems on the Earth and life

- Watch carefully until understanding the problem.
- A natural sample
 - chemically disequilibrium
 - 🖉 open system
 - unknown multiple processes (history)
 - one and only (synthesized by nature)
- Not difficult but exciting because you can create the method
- Find evidence from natural sample
- Write a paper what you understand

H, O, C, N

- Among the most abundant elements of the universe
- Large isotopic heterogeneities are observed in the universe.
- Their isotopic variations would be an important key to clarify how to form the solar system.

Outline

- Distribution of O isotopic composition in the proto-planetary disk
- Origin of O isotopic distribution in the protoplanetary disk
- Initial isotopic condition of proto-planetary disk
- Isotopic systematics of O, H and N between solar system planets
- Activity of violent proto-sun

Distribution of O isotopic composition

ISOTOPE MICROSCOPE

A direct solid condensate from protoplanetary disk gas

A direct solid condensate from protoplanetary disk gas

A direct solid condensate from protoplanetary disk gas

Crystal Growth in the Early Solar System

Crystal Growth in the Early Solar System

Crystal Growth in the Early Solar System

Crystal Growth in the Early Solar System

Crystal Growth in the Early Solar System

Crystal Growth in the Early Solar System

O isotopes of proto-planetary disk

 Proto-planetary disk gas changed the O isotopic composition between ¹⁶O-rich and ¹⁶O-poor.

Wide Field Survey for Early Solar System Remnants

O isotopes of proto-planetary disk

- Proto-planetary disk gas changed the O isotopic composition between ¹⁶O-rich and ¹⁶O-poor.
- ¹⁶O-poor disk gas is contributed by H₂O components.

Wide Field Survey for Early Solar System Remnants

A ¹⁶O-rich chondrule and the Sun

O isotopes of protoplanetary disk

- Proto-planetary disk gas changed the O isotopic composition between ¹⁶O-rich and ¹⁶O-poor.
- ¹⁶O-poor disk gas is contributed by H₂O components.
- ¹⁶O-rich disk gas is contributed by the Solar component.

O isotopes of protoplanetary disk

- Proto-planetary disk gas changed the O isotopic composition between ¹⁶O-rich and ¹⁶O-poor.
- ¹⁶O-poor disk gas is contributed by H_2O components.
- ¹⁶O-rich disk gas is contributed by the Solar component.
- These are the initial condition of the protoplanetary disk.
- Change of O isotopic composition of dusts is buffered by the disk gas because of High gas/dust of O.
- Change of O isotopic composition of disk gas in the early solar system is essential.

26

O isotopic compositions of outer planets

- Because icy planetesimals are a mixture of ice and dust of solar abundance ratio, Oxygen isotopic composition of icy planetesimals is expected to be +90 to +110 ‰ relative to Earth. (after Kuramoto and Yurimoto , 2004)
- Astronomical observations show that envelops of outer planets are enriched in heavy elements relative to solar composition (Atreya et al., 1999; Gautier and Owen, 1989)
- It is believed that the heavy element enrichments have been caused by excessive accretion of icy planetesimals.

H isotopic compositions of outer planets

 H_2O ice consists of H and O.The same model for O isotopes can be applied to H isotopes.

- Protosolar Nebula H₂: D-poor, δD_{SMOW}=-850‰
 by Solar ³He abundance (Linsky et al, 2006)
- Sometary ice: D-rich, δD_{SMOW}
 - =+1400‰ by comets (e.g.,Villanueva et al., 2009)
 - =+5450‰ by interstellar H2O (e.g., Butner et al., 2007)
- Possible mechanisms for D enrichments
 ion-molecule reaction in molecular cloud or outer disk
 - 🚽 grain-surface reaction in molecular cloud or outer disk
 - $$\widehat{\$}$$ self-shielding of H_2 in molecular cloud or outer disk
- 🐓 dust/ice/gas ratios: 0/1/2000
 - by cosmic abundance

H isotopic compositions of outer planets

 H_2O ice consists of H and O.The same model for O isotopes can be applied to H isotopes.

- Protosolar Nebula H₂: D-poor, δD_{SMOW}=-850‰
 by Solar ³He abundance (Linsky et al, 2006)
- Cometary ice: D-rich, δD_{SMOW}
 =+1400‰ by comets (e.g.,Villanueva et al., 2009)
 - $\frac{1}{2}$ =+5450‰ by interstellar H₂O (e.g., Butner et al., 2007)
- Possible mechanisms for D enrichments
 ion-molecule reaction in molecular cloud or outer disk
 enric surface reaction in molecular cloud on outer disk
 - 🗣 grain-surface reaction in molecular cloud or outer disk
 - ightarrow self-shielding of H_2 in molecular cloud or outer disk
- - by cosmic abundance

太陽系のH2OとH, H2の同位体比

Isotopic Systematics between H and O of Outer Planets

N isotopic compositions of outer planets

The same model for O isotopes can be applied to N isotopes. $NH_3\mbox{-}bearing$ ice would be an ice in the solar nebula.

- Protosolar Nebula: ¹⁴N-rich; δ¹⁵N_{air}=-400‰
 - by Solar wind (Marty et al., 2011)
- $$\widehat{}$$ Cometary ice: ¹⁴N-poor; $\delta^{15}N_{air}$ =+800‰
 - 🕏 by observations (e.g. Bockelée-Morvan et al., 2008).
- Possible mechanisms of ¹⁵N enrichments
 - 穿 ion-molecule reaction in molecular cloud or outer disk
 - $$\widehat{*}$$ self-shielding of N2 in molecular cloud or outer disk
- dust/ice(NH₃)/gas(N₂) ratios: 0/1/~10 (Owen and Niemann,2009)

Outline

- Distribution of O isotopic composition in the proto-planetary disk
- Origin of O isotopic distribution in the protoplanetary disk
- Isotopic systematics of O, H and N between solar system planets
- Activity of violent proto-sun

Solar wind-O isotopic composition of metal-

45

Inner edge region of protoplanetary disk

Solar wind-O isotopic composition of metal-

Solar wind-O isotopic composition of metal-

ISOTOPE NANOSCOPE

Science as method and methodology for problems on the Earth and life

Watch carefully until understanding the problem.

- A natural sample
 - 🖗 chemically disequilibrium
 - 🖗 open system
 - unknown multiple processes (history)
- Not difficult but exciting because you can create the method

58

- Find evidence from natural sample
- Write a paper what you understand