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My first encounter with “Kumazawa”

Shimazu (1967)
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“The Kumazawa principles”
(as | understand them)

* Do what anyone else does not do.
* Develop your own method (methodology).
* Challenge the big problems.

- history (+ “philosophy” (methodology))

Bragg’s principles (1938) (from Dyson (1970)):
(1)Don’t try to revive past glories.

(2)Don’t do things just because they are fashionable.
(3)Don’t be afraid of the scorn of theoreticians.
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Composition and Origin of the Moon

Motivation

* A challenge to the “dry” Moon paradigm
“Wet” Moon from geochemistry (Saal et al., 2008; Hauri et al. 2011)
- How about the lunar interior?
- Why wasn’t water lost by a giant impact?
* A giant impact model has difficulties in explaining lunar chemistry.

(according to numerical modeling (Canup, 2004), the Moon is formed mostly from
the impactor, not from the proto-Earth)

- Use (geo)physics to address these questions

Water in the Moon from geophysical observations
Physics and chemistry of Moon formation processes

13/10/08



Composition and Origin of the Moon

Conclusions

* Geophysical observations show that the lunar mantle is as “wet” as
the Earth’s upper mantle.

* A majority of water could be acquired to the Moon if
accretion occurs quickly compared to the cooling time-scale.

 The Moon was formed from the magma ocean of the proto-Earth.

* A giant impact heats and vaporizes the pre-existing magma
ocean on the proto-Earth but not the solid impactor.

 Many aspects of lunar composition can be interpreted as a natural
consequence of planetary formation (if one applies (geo)physics
properly) as opposed to by processes controlled by chance.
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“dry” Moon paradigm
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A giant impact model

giant impact = intensive heating = volatile loss
Are all the volatile elements depleted in the Moon?

(similarities and differences in composition between Earth and the Moon =2
How can this model explain them?)



Not-so-dry Moon!
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Some lunar samples (inclusions in olivine) contain water (+ other volatile
elements) similar to Earth’ s upper mantle (depleted but not-so-dry).

But does this imply globally “wet (not-so-dry)” Moon?
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How do we study the water

content?
Geological (geochemical) obs. Geophysical obs.
(direct, limited regions and depth) (global, indirect)

Need a microscopic model
(theory) based on mineral
physics
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Geophysical approach

* Deep interior (spatial distribution)
* Which observations?
— Seismic wave velocities
— Electrical conductivity
— Seismic wave attenuation, tidal dissipation (Q)
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Strategy

from one observable

from two observables
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Seismic wave velocity depends weakly on water content
but strongly on the major element chemistry and T
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- Useful for inferring major element composition
- But water effect is too small to be detected.



An experimental set-up for conductivity
measurements



Electrical conductivity depends strongly on water content
(relatively weakly depends on T and other factors)
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Karato (2011)

- Useful for inferring water content



Testing the method

Geophysics (mineral physics) Geochemistry

electrical conductivity =2 ~0.01 wt% MORB chemistry = ~0.01 wt%
(Dai-Karato, 2009) Dixon et al. (2002)
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X: electrical conductivity, Q

(from seismology)
from one observable

from two observables
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f Bulk composition from seismology (after Khan)
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The Moon has a higher FeO
content than Earth.
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Geophysical observations I:

electrical conductivity

Plosma sheet orientation

Plosma sheet
i

Magnetopause

Sonett (1982)
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the Moon
(Hood et al., 1982)
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Temperature and water content in the Moon
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- “Dry” Moon predicts very high T
- Some water ??
[no unique solution from conductivity alone]



Geophysical observations II:

Anelasticity

Anelasticity €< -2 viscosity (temperature, water content)
Q: low Q =2 high energy dissipation (high degree of anelasticity)
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High seismic Q (large errors)
Low tidal Q (37-60: small errors)

Toks6z (1974), Nakamura-Koyama (1982) Tidal Q (Williams et al. (2001))
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RESULTANT
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Experimental studies

Jackson (2009)
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Anelasticity (Q) and water
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Formulation based on micro-physics of Q

¢ “Power law”

 Maxwell time scaling

— analogy with creep (Karato (1995, 2003), McCarthy et al. (2011))

— experimental support (Jackson (Faul, Aizawa); Takei; Cooper)

* “anchored value approach”
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Q(z)~> Qtice (for a given T-z) u Qride = JQ_I(Z)'W(Z)dZ w
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Tidal Q suggests lunar interior has some water (similar to Earth’ s
asthenosphere).

But the results depend on the assumed T (z) (no unique solution).
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Constraining water content and temperature
using both conductivity and Q

Earth? \nosphere

= Lunar mantle is cooler than Earth’ s mantle,

but contains water similar to the Earth’ s asthenosphere.
13/10/08

25



DEPLETION FACTOR

“not-so-dry’ Moon
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Hydrogen is not much depleted in
the Moon relative to Earth.

—>Moon formation process did not remove much water
(although much of water was lost during Earth formation)
- Why? (what is the difference between Moon and Earth formation?)
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Why wasn’ t much water lost during the Moon formation
(although much water was lost during Earth formation)?

b Silicate vapour

Mars-sized
impactor

Proto-Earth

T

cooling

Condensed materials
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T
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>
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Formation of the Moon occurred in the much smaller space than the
formation of Earth in the solar nebula.
- high-pressure vapor (liquid condensation?), short accretion time
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Moon-forming disk was at high-P = liquid phase
Liquids can dissolve a substantial amount of water

Temperature (K} ———
1600 1800 2000 2200 2400

/

g ° / /

B s 4

2 ) Vapor Only

o | 4

g - , T
O Ligin
® Ligout

2F © CAgin

V Hibin
A Corin

Yoneda-Grossman (1995)

13/10/08

28



13/10/08

Cooling and accretion time scale
(in order to keep water, accretion must be quick)
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Cooling time-scale™ 30 year r(ag)

(Desch-Taylor, 2011)
t=1000~1 year

(Idaetal., 1997)

— Cooling time scale is longer than accretion time scale
- Accreted materials are mostly liquids
- Initial materials for the Moon are “wet” (not so “dry”).
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“Not-so-dry” Moon could be explained by a quick accretion

model in the small space.
Can a giant impact model also explain other major geochemical

features?

13/10/08
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Isotopic composition is very similar between the Moon and Earth = from the same materials
Major element composition is not similar = some fractionation (without isotopic fractionation)
How can we explain these two apparently conflicting observations?

Moon Earth
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Different Fe/(Fe+Mg) (higher Fe content
in the Moon)

Very similar Ti isotope composition
(Khan et al., 2006; Kuskov-Kronrod, 1998)

(Zhang et al., 2012)
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Giant impact and the composition of the Moon

0

Canup (2004) Cuk-Stewart (2012)

Problems with previous models
1. Most of materials are from the impactor. Only in a small parameter space
(with unreasonably high impact velocity) one can have composition similar

to Earth (by chance?).

2. Does not explain difference in the major element composition.
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Terrestrial magma ocean origin of the Moon?

e Similarity in isotope composition but lower Mg#
(higher FeO) than Earth = Moon from the magma
ocean of the proto-Earth?

* |s this a physically plausible model?

— Physics of shock heating

13/10/08
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Collision = pressure, volumetric strain

liquid-solid collision leads to the large compression of liquid
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Liquid is more heated than solid

Large volumetric strain
Negative q (the Griineisen parameter becomes large at high compression).
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Fate of ejected materials

A: escape
B: orbiting Earth = Moon
C: re-impact
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Probability of ejected materials to go to the proto-Earth

surrounding orbit (case B)

Stevenson (1987)

Gaseous phase expands (large x = RL)
@

— more chance to get into the proto-Earth surrounding orbit
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Conclusions

* Mineral physics (+ geophysics) helps understand the
composition and the origin of the Moon.

* Water content in the lunar mantle
— Geophysical obs. + mineral physics
—>the Moon is as “wet” as Earth
— quick accretion compared to cooling time-scale

* Collisional heating

— Mineral physics + thermodynamics = heating the pre-
existing magma ocean, not much heating on solid part

— the Moon from the magma ocean of the proto-Earth ?
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After a giant impact, pre-existing magma ocean
vaporized =2 volume expansion
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Its so dark ?
elsewhere



Q-z models for a given T-z



Initially condensed materials will be liquid phase if P is high
— how high is the pressure of the Moon forming disk?

Pressure, MPa

—
o
A

—
o
&

10 20 30 40 50
r/Re

o

No H2 Hz-rich gas

- Liquid stability region expands with hydrogen



Q(z)>> Quice (for a given T-z)  Qride = fQ_l(Z)'W(Z)dZ
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Tidal Q suggests lunar interior has some water (similar to Earth’ s

asthenosphere).
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But the results depend on the assumed T (z) (no unique solution).



My encounter with Kumazawa-san

From the book by Shimazu (1967)
Meeting in Nagoya (19747)

Meetings in Tokyo (mid 1980’s)

— Discussions on high-P deformation apparatus

At Albany (2008)
— At Miyashiro’s home with Shige Maruyama



Tidal dissipation and depth-dependent Q

tidal Q is sensitive to mid-mantle properties

Weighting function

1.2

1k

0.8 |

0.6 |

W(z), 107 /km

04

02 F

0

0 200 400 600 800 100012001400 1600
depth, km

-1 _ _1 .
Peale-Cassen (1978) Qride = JQ (z)-W(z)dz

weighting function = (strain energy)*(volume)



13/10/08

Canup (2004)
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Conclusions

 \Water content in the lunar mantle can be inferred from
geophysical observations.

e Water content in the lunar mantle is similar to that of
the Earth’ s upper mantle (~102+/-1 wt%).

* Not much water was lost during a giant impact because of
the small volume in which impact-induced materials
were ejected.

— High P nebula (disk) = liquid phase condensation
—> fast accretion = accretion of liquids (with water)
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Implications

The Moon was formed from the magma ocean
of the proto-Earth. = similarity of isotopic
composition, dissimilarity of the major
element chemistry (e.g., Mg#)

The condensation in the Moon-forming disk
was gas =2 liquid (not gas =2 solid).

The Moon was formed before a majority of
liquid solidified.
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