

Estimated impact time : Feb. 12, 2009. 10:46:13 UT

New Gravity Model, Resources

	Satellite	Data type	Amount	Arc length	Data weight
Far side	SELENE 4-way	Doppler	66,968	2.33 days	1 mm/s
	SELENE Main	Doppler UDSC	1 000 140	12 hours	1 mm/s
		Doppler GN	- 1,000,440		2 mm/s
		Range	60,884		5 m
	SELENE Rstar	Doppler	137,146	2.33 days	1 mm/s
		Range	129,333	1.00	5 m
	SELENE Vstar	Doppler	42,852	2.4 days	1 mm/s
		Range	35,386		5 m
Near side	LO I-V	Doppler		12 hours	4.5 mm/s
	A15/16ss	Doppler		8 hours	4.5 mm/s
	Clementine	Doppler	3 861 375	2 days	3 mm/s (Pomonkey 10 mm/s)
		Range			4 m
	LP nominal mission	Doppler	3	2 days	2 mm/s
		Range			4 m
	SMART-1	Doppler		15 hours	10 mm/s

Distribution of major lunar basins

Shaded = primary mascon basins, Lightly shaded = Type I basins Hatched = Type II basins, Dashed = unclassified.

B: ティコクレータの カラーコンポジット C: ツォルコフスキークレータ \mathcal{O} カラーコンポジット D: オリエンタールクレータ 内リングの カラーコンポジット

Ohtake et al., 2008

E. B図中a-f点におけるマルチバンドスペクトル

South Pole-Aitken Lithology 2.

Figure 1. Distribution of the craters we analyzed in this study.

	C ()	1.00.1		P (()	D (1)
	CraterName	latitude	longitude	diameter(km)	PurestAnorthnosite
1	AlderN	42S	181W	15	No
2	Hopmann	51S	180E	88	No
3	Bellinsgauzen	61S	164W	20	No
4	LemaitleW	62S	155W	8	No
5	MinnaertNE	64S	175W	20	No
б	Antoniadi	70S	168W	143	No
7	NumerovE	70S	154W	40	No
8	NumerovC	70S	163W	113	No
9	ZeemanN	70S	137W	30	No
10	PoincareNE	53S	161E	20	Yes
11	(Leipnitz)	47S	178W	77	Yes
12	(Alder)	38S	181W	245	(Yes)*
13	ApolloWa	35S	157W	334	No
14	BuffonSW	41S	134W	3	No
15	RidelW	48S	142W	42	No
16	AlderS	49S	177W	75	No
17	CoriE	50S	150W	56	No
18	Cabannes	61S	170W	73	No
19	FizeauW	58S	137W	96	No
20	Lemaitre	61S	149W	86	No
21	EiikmanE	62S	137W	50	No
22	Crommelin	68S	147W	88	No
23	VallisPlanckW	58S	122E	43	No
24	Schrodinger	66S	128E	35	No
25	AlderSrim	50S	177W	75	No
26	AntoniadiWrim	68S	177W	143	No
27	ApolloWb	36S	155W	7	No
28	BoseW	54S	170W	4	No
	2000	- 10		-	

Table.1 The list of the craters we analized

48

MI color composite of Poincare NE

Spectral Profiler SP Observation of Antoniadi Crater

Matsunaga et al., 2008

Possible mantle origin of olivine around lunar impact basins detected by SELENE Nature Geosci 3

LINL Nature Geosci. 3 (2010)

а

A2

Satoru Yamamoto¹*, Ryosuke Nakamura², Tsuneo Matsunaga¹, Yoshiko Ogawa³, Yoshiaki Ishihara⁴ Tomokatsu Morota⁵, Naru Hirata³, Makiko Ohtake⁵, Takahiro Hiroi⁶, Yasuhiro Yokota¹ and Junichi Haruyama⁵

