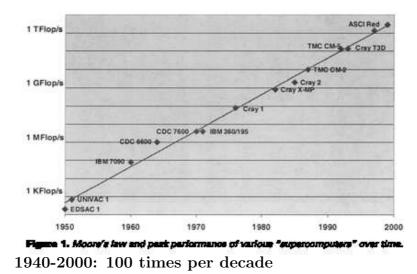
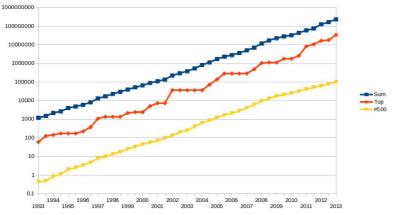
Exascale computers ?

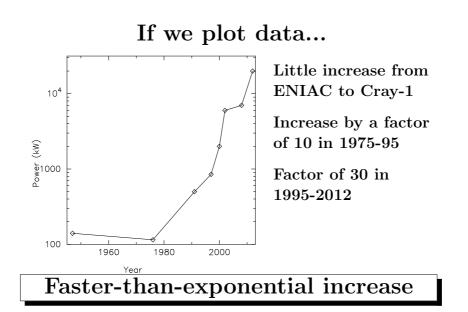

Jun Makino ELSI, Tokyo Institute of Technology RIKEN Advanced Institute for Computational Science

Science as Method and Methodology for Problems on the Earth and Life, Sept 15-17, Nagoya


Structure of the talk

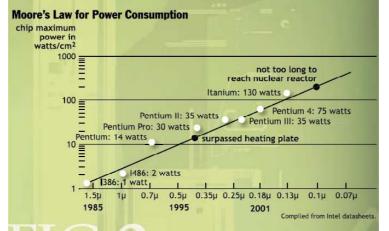
- Advance of the Supercomputers: 1950-2010
- Problems we see today
 - Power consumption
 - Parallelization overhead
 - How you develop/maintain codes???
- Solutions?
- Japanese Exascale Project

Advance of the Supercomputers


Advance of the Supercomputers

1993-2013: 500 times per decade(!?)

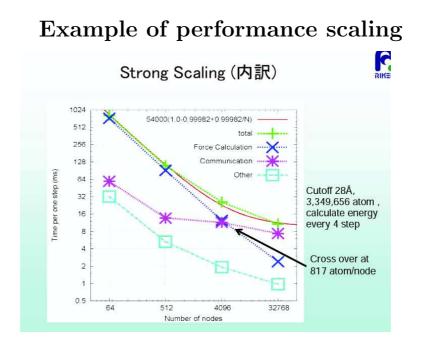
Problem 1: Power consumption


ENIAC	1947	$140 \mathrm{kW}$
Cray-1	1976	$115 \mathrm{kW}$
Cray C90	1991	$500 \mathrm{kW}$
ASCI Red	1997	$850 \mathrm{kW}$
ASCI White	2000	$2 \mathrm{MW}$
ES	$\boldsymbol{2002}$	6MW
ORNL XT5	2008	$7 \mathrm{MW}$
K-computer	2012	20MW

Why?

- Price increased: ASCI Red: \$ 50M, K-computer: \$ 1G
- Power consumption per chip (or per cm² of silicon) increased
- Price per chip (or per cm² of silicon) decreased

Power consumption per cm^2 of silicon


(Not much increase since 2003. Practical limit of cooling reached)

Problem 2: Parallelization overhead

Number of floating-point units (Multiply and add)

Cray-1	1976	1
Cray C90	1991	16
ASCI White	2000	$16,\!384$
\mathbf{ES}	$\boldsymbol{2002}$	40,960
K computer	2012	$2,\!820,\!096$
K computor is	mood	for large probl

K computer is good for large problems (with small number of timesteps) but not so good for problems that require large number of timesteps.

Molecular Dynamics on K computer

- One cannot go below 5ms/timestep
- Limitation: communication overhead

Is 5ms/step fast enough?

- Yes for cosmology or other really large-N calculations with small number of timesteps
- No for problems that require long simulation time (like planet formation...)

Very roughly speaking, integration of 10Myrs would take 1 year...

Problem 3: How you develop/maintain codes???

- $\bullet \mathbf{MPI}$
- OpenMP
- SIMD extensions
- Cache-friendly code
- Accelerators
- ...
- ...

Problem 3: How you develop/maintain codes???

- MPI
- OpenMP
- SIMD extensions
- Cache-friendly code
- Accelerators
- ...
- ...

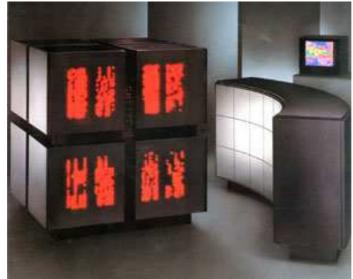
(I'll not discuss this aspect much...)

Solutions?

- We need to reduce power consumption AND communication overhead.
- We do not need much memory (1TB would be enough to keep 10^{10} particles)

Possible solution:

- Processors with "small" on-chip memory (small means 256MB or more)
- Large number of cores, but in SIMD mode to reduce communication overhead


Massively-parallel SIMD machines

— A lost technology —

- Goodyear MPP (1970s)
- ICL DAP (Late 1970s)
- Thinking Machines Connection Machine-1/2 (Late 1980s)
- Maspar MP-1/2 (Early 1990s)

CM-2 was pretty successful

TMC CM-2

2048 floating point units in SIMD mode

TMC CM-2

- 64k 1-bit processors, each with 64k-bit memory
- 2048 floating-point units, each shared by 32 processors
- 12-dimensional hypercube network between processor chips (16 processors in one chip)

With the present-day technology, we can integrate 4-8 CM-2s into one chip, for the peak performance of 10-20 Tflops at < 100W

How we reduce power and communication overhead

• Power:

- Minimize data movement: Remove external memory and cache
- Minimize instruction fetch and decode: Massive SIMD
- Communication overhead:
 - Minimize data movement: Remove external memory and cache, reduce the number of chips
 - Reduce the handshake overhead: Cores in SIMD operation do not need handshake, since they are executing the same instruction

Japanese Exascale Project

NHK TV news reporting: Japan to develop new supercomputer with 100x power of K-computer

I was there as a member of a working group organized by the ministry of education

Current rough plan

- Follow-up of K-computer: would require 60-80 MW to reach exaflops in 2020
- Combine SIMD "accelerators" with MIMD generalpurpose machine
- MIMD part: Fujitsu design
- SIMD part: Based on our design
 - reduce power consumption by 80%
 - reduce communication latency by at least a factor of 10

Summary

- Current big supercomputers are not ideal for longterm integration of "small" problems ("small" means 10^7 particles now and 10^9 particles in 2020)
- We need a new architecture (or revival of an old architecture...) to solve this problem: Massively-parallel SIMD
- If everything goes well, we will put this MP-SIMD system as part of Japanese Exascale project