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They raise natural radiation level by a factor of 100-1000. Such rapid speciation events 

can also contribute to macro-evolution during mass extinction events, such as observed 

during the Cambrian explosion of biodiversity (Figure 7). A similar rapid speciation 

(though is in a much smaller scale) also has been undergoing in cichlid fishes and great 

African apes in the last several tens of thousands of years in the current African rift 

valley, including the origin of humankind, by nebular-encounter and 

carbonatite-volcanism speciation-forcings  (Figure 8 and 9). 

 The new disaster-forced biological evolution model unites various concepts of 

evolution as follows. First, the phylogenic graduation can be placed in the case that 

� = 2�/� is low enough. In such a case, because of a low mutation rate or a high 

immigration rate, the half-isolated groups remain in the stable equilibrium solution in 

Figure 4; in other words, they are subspecies or races that can interbreed with the 

parental group. Each subspecies adapts to their living environment through natural 

selection. That is exactly what Darwin observed and described in his famous book 

(Darwin 1859). Second, the nonlinear nature of the new disaster-forced speciation 

model well fits the concept of “punctuated equilibrium” proposed by Eldredge and 

Gould (1972). The existence of a stable solution in a low-α case gives the theoretical 

basis to the stability of species which was postulated in the “punctuated equilibrium”. 

When � = 2�/�  becomes high enough by some reason, the rapid speciation is 

initiated, leading to a macro-evolution. Forth, it includes all of the aro-, para-, and 

sympatric speciation depending on the value of � = 2�/�. In particular, according to 

the new model, the sympatric speciation is possible without geological isolation, when 

the mutation rate � is as high as unity per individual per generation. Such a sympatric 

speciation was suggested in small volcanic lakes in Cameroon (Lake Barombi Mbo and 

Lake Berman, Table 2)．Finally, the disaster-forced biological evolution model explains 

why the speciation rate is considerably high around the mass extinction events (Raup 

and Sepkoski 1982; Sepkoski 1998; Bambach 2006), since they are likely to be due to 

the global disasters by encounters with nebulae (supernova remnants and dark nebulae; 

Kataoka et al. 2013a, b). 
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